If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+3(x^2)=528
We move all terms to the left:
x+3(x^2)-(528)=0
determiningTheFunctionDomain 3x^2+x-528=0
a = 3; b = 1; c = -528;
Δ = b2-4ac
Δ = 12-4·3·(-528)
Δ = 6337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{6337}}{2*3}=\frac{-1-\sqrt{6337}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{6337}}{2*3}=\frac{-1+\sqrt{6337}}{6} $
| y/2+2=11 | | x+47+76+63=180 | | -10=2y-2 | | 742.90=46(x+2.15) | | 8x+1+88+51=180 | | 5y+12=16 | | 10x+80+40=180 | | 4w-16=44 | | 65+x+85+40=180 | | 65+x+85+40=18 | | -13.7=x/5-1.2 | | 8x+8=3x+48 | | (1.4x-900)^2=0 | | 40+90+54+x=180 | | x+3(x*x)=528 | | 23+90+x+79=180 | | P=1.1x-2037 | | 7x+4-3x=10x+2-1x | | 24+w=72 | | 13-b-13=18-13 | | Y/30+y/30=18/30 | | s=(32-2)180 | | 6z=(3+3)z | | -5.3=1.1+y/4 | | 3y+4=5y–16 | | (x/3+7)=3x/2-2(x-1) | | 15.95=41.99-n | | 60+40+39x+2=180 | | x=8=x | | 40+80+15x=180 | | 11x+14=7x-3 | | 40+80+15+x=180 |